Skip to main content
Log in

Gene expression profile analysis and target gene discovery of Mycobacterium tuberculosis biofilm

  • Genomics, Transcriptomics, Proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tuberculosis) is a fatal infectious disease to human health, and the drug tolerance and immune evasion of M. tuberculosis were reported to be related to its biofilm formation; however, the difficulty of M. tuberculosis biofilm culture and its unknown global mechanism impede its further research. Here, we developed a modified in vitro M. tuberculosis biofilm model with shorter culture time. Then we used Illumina RNA-seq technology to determine the global gene expression profile of M. tuberculosis H37Rv biofilms. Over 437 genes are expressed at significantly different levels in biofilm cells than in planktonic cells; among them, 153 were downregulated and 284 were upregulated. Go enrichment analysis and KEGG pathway analysis showed that genes involved in biosynthesis and metabolism of sulfur metabolism, steroid degradation, atrazine degradation, mammalian cell entry protein complex, etc. are involved in M. tuberculosis biofilm cells. Especially, ATP-binding cassette (ABC) transporters Rv1217c and Rv1218c were significantly upregulated in biofilm, whereas efflux pump inhibitors (EPIs) piperine and 1-(1-naphthylmethyl)-piperazine (NMP) inhibited biofilm formation and the expression of the Rv1217c and Rv1218c genes in a concentration-dependent manner, respectively, indicating Rv1217c and Rv1218c are potential target genes of M. tuberculosis biofilm. This study is the first RNA-Seq-based transcriptome profiling of M. tuberculosis biofilms and provides insights into a potential strategy for M. tuberculosis biofilm inhibition.

Key points

• Characterize M. tuberculosis transcriptomes in biofilm cells by RNA-seq.

• Inhibit the expression of Rv1217c and Rv1218c repressed biofilm formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Balganesh M, Kuruppath S, Marcel N, Sharma S, Nair A, Sharma U (2010) Rv1218c, an ABC transporter of Mycobacterium tuberculosis with implications in drug discovery. Antimicrob Agents Chemother 54(12):5167–5172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baugh S, Phillips CR, Ekanayaka AS, Piddock LJ, Webber MA (2014) Inhibition of multidrug efflux as a strategy to prevent biofilm formation. J Antimicrob Chemother 69(3):673–681

    Article  CAS  PubMed  Google Scholar 

  • Brzezinska M, Szulc I, Brzostek A, Klink M, Kielbik M, Sulowska Z, Pawelczyk J, Dziadek J (2013) The role of 3-ketosteroid 1 (2)-dehydrogenase in the pathogenicity of Mycobacterium tuberculosis. BMC Microbiol 13(1):43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brzostek A, Pawelczyk J, Rumijowska-Galewicz A, Dziadek B, Dziadek J (2009) Mycobacterium tuberculosis is able to accumulate and utilize cholesterol. J Bacteriol 191(21):6584–6591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll KS, Gao H, Chen H, Stout CD, Leary JA, Bertozzi CR (2005) A conserved mechanism for sulfonucleotide reduction. PLoS Biol 3(8):e250

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen H, Shiroguchi K, Ge H, Xie XS (2015) Genome-wide study of mRNA degradation and transcript elongation in E scherichia coli. Mol Syst Biol 11(1):781

    Article  PubMed  PubMed Central  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322

    Article  CAS  PubMed  Google Scholar 

  • De Kievit TR, Parkins MD, Gillis RJ, Srikumar R, Ceri H, Poole K, Iglewski BH, Storey DG (2001) Multidrug efflux pumps: expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 45(6):1761–1770

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng X, Li Z, Zhang W (2012) Transcriptome sequencing of Salmonella enterica serovar Enteritidis under desiccation and starvation stress in peanut oil. Food Microbiol 30(1):311–315

    Article  CAS  PubMed  Google Scholar 

  • Forde BM, O’Toole PW (2013) Next-generation sequencing technologies and their impact on microbial genomics. Brief Funct Genomics 12(5):440–453

    Article  CAS  PubMed  Google Scholar 

  • Forrellad MA, McNeil M, de la Paz Santangelo M, Blanco FC, García E, Klepp LI, Huff J, Niederweis M, Jackson M, Bigi F (2014) Role of the Mce1 transporter in the lipid homeostasis of Mycobacterium tuberculosis. Curr Top Microbiol Immunol 94(2):170–177

    CAS  Google Scholar 

  • Gandhi NR, Nunn P, Dheda K, Schaaf HS, Zignol M, Van Soolingen D, Jensen P, Bayona J (2010) Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet 375(9728):1830–1843

    Article  Google Scholar 

  • Güell M, Van Noort V, Yus E, Chen W-H, Leigh-Bell J, Michalodimitrakis K, Yamada T, Arumugam M, Doerks T, Kühner S (2009) Transcriptome complexity in a genome-reduced bacterium. Science 326(5957):1268–1271

    Article  PubMed  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108

    Article  CAS  PubMed  Google Scholar 

  • Hatzios SK, Bertozzi CR (2011) The regulation of sulfur metabolism in Mycobacterium tuberculosis. PLoS Pathog 7(7):e1002036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann C, Leis A, Niederweis M, Plitzko JM, Engelhardt H (2008) Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. PNAS 105(10):3963–3967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Van Der Geize R, Besra GS, Gurcha SS, Liu A, Rohde M, Singh M, Coates A (2010) 3-ketosteroid 9α-hydroxylase is an essential factor in the pathogenesis of Mycobacterium tuberculosis. Mol Microbiol 75(1):107–121

    Article  CAS  PubMed  Google Scholar 

  • Islam MS, Richards JP, Ojha AK (2012) Targeting drug tolerance in mycobacteria: a perspective from mycobacterial biofilms. Expert Rev Anti-Infect Ther 10(9):1055–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin J, Zhang J, Guo N, Feng H, Li L, Liang J, Sun K, Wu X, Wang X, Liu M (2011) The plant alkaloid piperine as a potential inhibitor of ethidium bromide efflux in Mycobacterium smegmatis. J Med Microbiol 60(2):223–229

    Article  CAS  PubMed  Google Scholar 

  • Kristoffersen SM, Haase C, Weil MR, Passalacqua KD, Niazi F, Hutchison SK, Desany B, Kolstø A-B, Tourasse NJ, Read TD (2012) Global mRNA decay analysis at single nucleotide resolution reveals segmental and positional degradation patterns in a Gram-positive bacterium. Genome Biol 13(4):R30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Lawrence ML, Watt J, Cooksey AM, Burgess SC, Nanduri B (2012) RNA-seq based transcriptional map of bovine respiratory disease pathogen “Histophilus somni 2336”. PLoS One 7(1):e29435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar N, Radhakrishnan A, Wright CC, Chou TH, Lei HT, Bolla JR, Tringides ML, Rajashankar KR, Su CC, Purdy GE (2014) Crystal structure of the transcriptional regulator Rv1219c of Mycobacterium tuberculosis. Protein Sci 23(4):423–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kvist M, Hancock V, Klemm P (2008) Inactivation of efflux pumps abolishes bacterial biofilm formation. Appl Environ Microbiol 74(23):7376–7382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamont EA, Xu WW, Sreevatsan S (2013) Host-Mycobacterium avium subsp. paratuberculosis interactome reveals a novel iron assimilation mechanism linked to nitric oxide stress during early infection. BMC Genomics 14(1):694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Deikus G, Bree A, Durand S, Kearns DB, Bechhofer DH (2014) Global analysis of mRNA decay intermediates in B acillus subtilis wild-type and polynucleotide phosphorylase-deletion strains. Mol Microbiol 94(1):41–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marjanovic O, Miyata T, Goodridge A, Kendall LV, Riley LW (2010) Mce2 operon mutant strain of Mycobacterium tuberculosis is attenuated in C57BL/6 mice. Curr Top Microbiol 90(1):50–56

    CAS  Google Scholar 

  • McLean KJ, Lafite P, Levy C, Cheesman MR, Mast N, Pikuleva IA, Leys D, Munro AW (2009) The structure of Mycobacterium tuberculosis CYP125 molecular basis for cholesterol binding in a P450 needed for host infection. J Biol Chem 284(51):35524–35533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nesbitt NM, Yang X, Fontán P, Kolesnikova I, Smith I, Sampson NS, Dubnau E (2010) A thiolase of Mycobacterium tuberculosis is required for virulence and production of androstenedione and androstadienedione from cholesterol. Infect Immun 78(1):275–282

    Article  CAS  PubMed  Google Scholar 

  • Norris V, Turnock G, Sigee D (1996) The Escherichia coli enzoskeleton. Mol Microbiol 19(2):197–204

    Article  CAS  PubMed  Google Scholar 

  • Ojha AK, Baughn AD, Sambandan D, Hsu T, Trivelli X, Guerardel Y, Alahari A, Kremer L, Jacobs WR Jr, Hatfull GF (2008) Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol Microbiol 69(1):164–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang JM, Layre E, Sweet L, Sherrid A, Moody DB, Ojha A, Sherman DR (2012) The polyketide Pks1 contributes to biofilm formation in Mycobacterium tuberculosis. J Bacteriol 194(3):715–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsek MR, Singh PK (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Ann Microbiol 57(1):677–701

    Article  CAS  Google Scholar 

  • Pasricha R, Chandolia A, Ponnan P, Saini NK, Sharma S, Chopra M, Basil MV, Brahmachari V, Bose M (2011) Single nucleotide polymorphism in the genes of mce1 and mce4 operons of Mycobacterium tuberculosis: analysis of clinical isolates and standard reference strains. BMC Microbiol 11(1):41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Passalacqua KD, Varadarajan A, Ondov BD, Okou DT, Zwick ME, Bergman NH (2009) Structure and complexity of a bacterial transcriptome. J Bacteriol 191(10):3203–3211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peyron P, Bordier C, Elsa-Noah N, Maridonneau-Parini I (2000) Nonopsonic phagocytosis of Mycobacterium kansasii by human neutrophils depends on cholesterol and is mediated by CR3 associated with glycosylphosphatidylinositol-anchored proteins. J Immunol 165(9):5186–5191

    Article  CAS  PubMed  Google Scholar 

  • Pysz MA, Conners SB, Montero CI, Shockley KR, Johnson MR, Ward DE, Kelly RM (2004) Transcriptional analysis of biofilm formation processes in the anaerobic, hyperthermophilic bacterium Thermotoga maritima. Appl Environ Microbiol 70(10):6098–6112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramage G, Bachmann S, Patterson TF, Wickes BL, López-Ribot JL (2002) Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J Antimicrob Chemother 49(6):973–980

    Article  CAS  PubMed  Google Scholar 

  • Reddi R, Arya T, Kishor C, Gumpena R, Ganji RJ, Bhukya S, Addlagatta A (2014) Selective targeting of the conserved active site cysteine of Mycobacterium tuberculosis methionine aminopeptidase with electrophilic reagents. FEBS J 281(18):4240–4248

    Article  CAS  PubMed  Google Scholar 

  • Resch A, Rosenstein R, Nerz C, Götz F (2005) Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions. Appl Environ Microbiol 71(5):2663–2676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell DG (2007) Who puts the tubercle in tuberculosis? Nat Rev Microbiol 5(1):39–47

    Article  CAS  PubMed  Google Scholar 

  • Ryan A, Keany S, Eleftheriadou O, Ballet R, Cheng H, Sim E (2014) Mechanism-based inhibition of HsaD: a CC bond hydrolase essential for survival of Mycobacterium tuberculosis in macrophage. FEMS Microbiol Lett 350(1):42–47

    Article  CAS  PubMed  Google Scholar 

  • Saini NK, Sharma M, Chandolia A, Pasricha R, Brahmachari V, Bose M (2008) Characterization of Mce4A protein of Mycobacterium tuberculosis: role in invasion and survival. BMC Microbiol 8(1):200

    Article  PubMed  PubMed Central  Google Scholar 

  • Sambandan D, Dao DN, Weinrick BC, Vilchèze C, Gurcha SS, Ojha A, Kremer L, Besra GS, Hatfull GF, Jacobs WR (2013) Keto-mycolic acid-dependent pellicle formation confers tolerance to drug-sensitive Mycobacterium tuberculosis. Mbio 4(3):e00222–e00213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauer K (2003) The genomics and proteomics of biofilm formation. Genome Biol 4(6):1–5

    Article  Google Scholar 

  • Schäfer G, Guler R, Murray G, Brombacher F, Brown GD (2009) The role of scavenger receptor B1 in infection with Mycobacterium tuberculosis in a murine model. PLoS One 4(12):e8448

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Kumar M, Sharma S, Nargotra A, Koul S, Khan IA (2010) Piperine as an inhibitor of Rv1258c, a putative multidrug efflux pump of Mycobacterium tuberculosis. J Antimicrob Chemother 65(8):1694–1701

    Article  CAS  PubMed  Google Scholar 

  • Sligar SG, Makris TM, Denisov IG (2005) Thirty years of microbial P450 monooxygenase research: peroxo-heme intermediates—the central bus station in heme oxygenase catalysis. Biochem Biophys Res Commun 338(1):346–354

    Article  CAS  PubMed  Google Scholar 

  • Smith DP, Kitner JB, Norbeck AD, Clauss TR, Lipton MS, Schwalbach MS, Steindler L, Nicora CD, Smith RD, Giovannoni SJ (2010) Transcriptional and translational regulatory responses to iron limitation in the globally distributed marine bacterium Candidatus Pelagibacter ubique. PLoS One 5(5):e10487

    Article  PubMed  PubMed Central  Google Scholar 

  • Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56(1):187–209

    Article  CAS  PubMed  Google Scholar 

  • Sun M, Andreassi JL, Liu S, Pinto R, Triccas JA, Leyh TS (2005) The trifunctional sulfate-activating complex (SAC) of Mycobacterium tuberculosis. J Biol Chem 280(9):7861–7866

    Article  CAS  PubMed  Google Scholar 

  • Van der Geize R, Yam K, Heuser T, Wilbrink MH, Hara H, Anderton MC, Sim E, Dijkhuizen L, Davies JE, Mohn WW (2007) A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. PNAS 104(6):1947–1952

    Article  PubMed  PubMed Central  Google Scholar 

  • Van der Geize R, De Jong W, Hessels G, Grommen A, Jacobs A, Dijkhuizen L (2008) A novel method to generate unmarked gene deletions in the intracellular pathogen Rhodococcus equi using 5-fluorocytosine conditional lethality. Nucleic Acids Res 36(22):e151–e151

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Li X, Mao Y, Blaschek HP (2011) Single-nucleotide resolution analysis of the transcriptome structure of Clostridium beijerinckii NCIMB 8052 using RNA-Seq. BMC Genomics 12(1):479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Pei H, Huang B, Zhu X, Zhang J, Zhou B, Zhu L, Zhang Y, Zhou F-F (2013) The expression of ABC efflux pump, Rv1217c–Rv1218c, and its association with multidrug resistance of Mycobacterium tuberculosis in China. Curr Microbiol 66(3):222–226

    Article  CAS  PubMed  Google Scholar 

  • Westermann AJ, Gorski SA, Vogel J (2012) Dual RNA-seq of pathogen and host. Nat Rev Microbiol 10(9):618–630

    Article  CAS  PubMed  Google Scholar 

  • Wipperman MF, Yang M, Thomas ST, Sampson NS (2013) Shrinking the FadE proteome of Mycobacterium tuberculosis: insights into cholesterol metabolism through identification of an α2β2 heterotetrameric acyl coenzyme A dehydrogenase family. J Bacteriol 195(19):4331–4341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wurtzel O, Sapra R, Chen F, Zhu Y, Simmons BA, Sorek R (2010) A single-base resolution map of an archaeal transcriptome. Genome Res 20(1):133–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan M, Chen M, Zhang W, Lu W, Wang J, Yang M, Zhao P, Tang R, Li X, Hao Y (2012) Genome sequence and transcriptome analysis of the radioresistant bacterium Deinococcus gobiensis: insights into the extreme environmental adaptations. PLoS One 7(3):e34458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Lin K (2012) A phylogenomic analysis of Escherichia coli/Shigella group: implications of genomic features associated with pathogenicity and ecological adaptation. BMC Evol Biol 12(1):174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Xie J-P (2011) Mammalian cell entry gene family of Mycobacterium tuberculosis. Mol Cell Biochem 352(1-2):1–10

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Long F, Chen Y, Knøchel S, She Q, Shi X (2008) A putative ABC transporter is involved in negative regulation of biofilm formation by Listeria monocytogenes. Appl Environ Microbiol 74(24):7675–7683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zolotarev AS, Unnikrishnan M, Shmukler BE, Clark JS, Vandorpe DH, Grigorieff N, Rubin EJ, Alper SL (2008) Increased sulfate uptake by E. coli overexpressing the SLC26-related SulP protein Rv1739c from Mycobacterium tuberculosis. Comp Biochem Physiol A Comp Biochem Phys A 149(3):255–266

    Article  Google Scholar 

Download references

Acknowledgements

The Fund for Science and Technology Development of Jilin Province approved this study development.

Funding

This work was supported by the State’s Key Project of Research and Development Plan (2016YFD0501302; 2017YFD0502200); the National Natural Science Foundation of China (No. 81801972; 31172364); the Fund for Science and Technology Development of Jilin Province (20150101108JC); and the Project of the Education Department of Jilin Province (No. 2016444). Science and Technology Research Project of Jilin Provincial Department of Education (JKH20211179).

Author information

Authors and Affiliations

Authors

Contributions

FM and HZ conceived and carried out the experiments; FM wrote the manuscript; ZY and CW provide the part of experiments design; CW and AY made the data collection; FM made the data analysis; LN perform the figure making; FM performed the cell cultivation; FM and HZ designed study and guide the experiments.

Corresponding authors

Correspondence to Yang Wang or Lu Yu.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors of this investigation.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 222 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, F., Zhou, H., Yang, Z. et al. Gene expression profile analysis and target gene discovery of Mycobacterium tuberculosis biofilm. Appl Microbiol Biotechnol 105, 5123–5134 (2021). https://doi.org/10.1007/s00253-021-11361-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-021-11361-4

Keywords

Navigation