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DNA methylation is an epigenetic modification that differs between plant organs and tissues, but the extent of variation
between cell types is not known. Here, we report single-base-resolution whole-genome DNA methylomes, mRNA
transcriptomes and small RNA transcriptomes for six cell populations covering the major cell types of the Arabidopsis root
meristem. We identify widespread cell-type-specific patterns of DNA methylation, especially in the CHH sequence context,
where H is A, C or T. The genome of the columella root cap is the most highly methylated Arabidopsis cell characterized
so far. It is hypermethylated within transposable elements (TEs), accompanied by increased abundance of transcripts
encoding RNA-directed DNA methylation (RdDM) pathway components and 24-nt small RNAs (smRNAs). The absence of
the nucleosome remodeller DECREASED DNA METHYLATION 1 (DDM1), required for maintenance of DNA methylation,
and low abundance of histone transcripts involved in heterochromatin formation suggests that a loss of heterochromatin
may occur in the columella, thus allowing access of RdDM factors to the whole genome, and producing an excess of 24-nt
smRNAs in this tissue. Together, these maps provide new insights into the epigenomic diversity that exists between
distinct plant somatic cell types.

DNA methylation is an epigenetic modification of cytosine
bases implicated in gene regulation. In plants, DNA
methylation occurs in three distinct cytosine contexts:

CG, CHG and CHH. CG and CHG methylation is stably
maintained by DNA METHYLTRANSFERASE 1 (MET1) and
CHROMOMETHYLASE 3 (CMT3), respectively. De novo DNA
methylation is catalysed by DOMAINS REARRANGED
METHYLTRANSFERASE 2 (DRM2) in all three sequence contexts,
in a process that is guided by 24-nt smRNAs, known as RdDM
(refs 1,2). DNA methylation may also be maintained independently
of the RdDM pathway through the concerted action of DDM1 and
CHROMOMETHYLASE 2 (CMT2)3,4. DDM1 functions to displace
the linker histone H1 in heterochromatic regions of the genome,
allowing CMT2 access to the DNA, where it is able to catalyse the
methylation of cytosines in the CHG and CHH contexts3,4.
Although DNA methylation can be a stable epigenetic mark, faith-
fully maintained for many hundreds of generations5, dynamic
changes in DNA methylation patterns can be observed during
short time scales in response to the environment6,7, or in different
cell types of a single individual8–11, presumably a result of differen-
tial regulation of the RdDM or CMT2-mediated DNA methylation
pathways. Thus, DNA methylation is a stable but reversible epige-
netic modification, and may reflect, or play an important role in
maintaining, cell-type identity. However, further investigation is
needed to characterize the epigenome in distinct cell types to inves-
tigate the potential role of any differences.

In Arabidopsis, a major biological role of DNA methylation is in
silencing TE transcription. Loss of DNA methylation because of

mutations in DDM1 or MET1 is sufficient for transcriptional acti-
vation of demethylated TE sequences, and transposition of some
of these activated TEs3,12,13. Although TE insertions may contribute
to novel modes of gene regulation, excess TE activity produces dele-
terious mutations, and efficient TE silencing is crucial for the main-
tenance of genome integrity. Plants may be most vulnerable to TE
activity in the stem cells, as these are the progenitor cells from
which all others derive, and TE insertions within the stem cells
will therefore be inherited by all descendant cells. Indeed, highly
complex mechanisms of TE silencing have been reported in the
sperm and embryo. TE silencing in the sperm is thought to be
assisted by 21-nt smRNAs derived from the vegetative cell
nucleus, a non-generative companion to the sperm, and in the
developing embryo by endosperm-derived 24-nt smRNAs9–11, indi-
cating that silencing of TEs may be particularly important in these
cells. Plants have stem cell niches at distal axes, known as the shoot
apical meristem (SAM) and root apical meristem (RAM). RdDM
factors, DNA methyltransferases, and DDM1 are all upregulated
to reinforce TE silencing in the SAM (ref. 14). There is some indi-
cation that gross levels of DNA methylation may be distinct in the
RAM (refs 15,16), but patterns of DNA methylation in the RAM
have not been studied at high resolution, and the dynamics of
DNA methylation-mediated TE silencing in the RAM are so far
unexplored. Here we describe comprehensive DNA methylation
and transcriptome profiling of six distinct cell types of the
Arabidopsis RAM, revealing unique cell-type-specific characteristics
of DNA methylation and the machinery responsible for shaping
the methylome.
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Results
Columella is the most CHH-hypermethylated cell type in
Arabidopsis. To investigate patterns of DNA methylation in
different plant cell types, we used protoplasting followed by
fluorescence-activated cell sorting (FACS) of cell populations
marked by green fluorescent protein (GFP) in a range of reporter
lines. These lines represent the major cell types or tissues in the
root: epidermis (ProWER–GFP), cortex (ProCOR–GFP),
endodermis (ProSCR–GFP), stele (ProWOL–GFP), whole
columella root cap (PET111 enhancer trap line) and lower
columella (ProCYCD5–GFP) (Fig. 1a). Two independently
generated reporter lines were analysed for the endodermis.
Following isolation of highly enriched populations of each cell
type (Supplementary Fig. 1), we generated single-base resolution
maps of cytosine methylation by whole-genome bisulphite
sequencing and transcriptome profiles by RNA-seq and smRNA-
seq (Fig. 1b and Supplementary Table 1). Analysis of global levels
of DNA methylation in the six cell populations revealed that
methylation in all sequence contexts (mCG, mCHG, mCHH)
were higher in the columella, with dramatically increased levels of
mCHH (Fig. 1c). Comparison with previously published
Arabidopsis methylomes showed that mCHH levels in the
columella are higher than in any other tissue or cell type analysed
to date10,11 (Fig. 1c). The enrichment of mCHH in the columella
was the most pronounced in the pericentromeric regions of the
chromosome (Fig. 1d). Whole root tips from the PET111
transgenic line, and from Col-0, showed similar patterns and

levels of mC as the non-columella cell types (Fig. 1c,d), indicating
that the differences observed in the columella cell populations
were due to cell type and not a widespread perturbation of DNA
methylation in the transgenic lines used for cell isolation.

Columella hypermethylation is the major source of widespread
differential DNA methylation in the root meristem. To further
investigate the large differences in DNA methylation patterns, we
identified differentially methylated regions (DMRs) in the genome
between the cell types. With a target false discovery rate of 5%, we
identified 38,307 DMRs among the different cell types (Fig. 2a). Of
these, 13.6% (5,225) were differentially methylated only in the CG
context (CG-DMRs), whereas 82.9% (31,761) were differentially
methylated only in the CH context (CH-DMRs) (Fig. 2a,
Supplementary Tables 2 and 3). Regions differentially methylated in
both the CG and CH context (C-DMRs) were rare, with only 1,321
such regions observed (Fig. 2a and Supplementary Table 4). The
DMR length also seemed to be associated with DNA methylation
context, with CG-DMRs being, on average, shorter than CH- and
C-DMRs (Fig. 2b). Overall, 13.8% of the nuclear genome was
differentially methylated between the six cell types, mostly in the
CH context (Fig. 2c).

Some regions of the genome are prone to spontaneous changes in
DNAmethylation levels17,18. To determine if the regions of differen-
tial DNA methylation between cell types were due to spontaneous
fluctuations in DNA methylation levels between the different
transgenic lines used, we compared the root cell-type-specific
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DMRs with two types of previously identified spontaneous DMRs:
transgenerational DMRs (ref 17) and population DMRs (ref 19).
We found that 76 and 60% of root cell-type-specific CG-DMRs
and C-DMRs, respectively, overlapped with population DMRs,
whereas only 5 and 2% of root cell-type-specific CG- and
C-DMRs overlapped with transgenerational CG- and C-DMRs
(Supplementary Fig. 2). We concluded that the majority of root
cell-type-specific DMRs occur in regions of the genome known to
be epigenetically labile, likely to be due to variation in smRNAs.

To determine if the enrichment of DNA methylation in pericen-
tromeric regions (Fig. 1d) was linked to DMRs, we assessed the dis-
tribution of DMRs along the chromosomes (Fig. 2d and
Supplementary Fig. 3). Although CG-DMRs are most abundant in
the chromosome arms, the number of CH- and C-DMRs peaked
in the proximal and distal pericentromeric regions, respectively.
Closer inspection of the genomic features intersecting each set of
DMRs revealed that more than 80% of CG-DMRs overlapped
with protein-coding gene bodies (Fig. 2e), and 73% of CH-DMRs
and 44% of C-DMRs overlapped with TEs. The remaining
CH-DMRs and C-DMRs were found to overlap mainly with inter-
genic regions or pseudogenes.

Hierarchical clustering based on differences in DNA methylation
showed that the columella cells form a highly distinct group compared
with other cells of the root (Fig. 2f). Interestingly, DNA methylation
patterns seemed to be more similar between cell types located phys-
ically close to one another in the root, regardless of their lineage,
whereas transcriptional profiles were more dependent on cell lineage
than physical position in the root (Supplementary Fig. 4). This may
suggest that methylation patterns are in part regulated by positional

information or cell–cell communication. Columella cells were highly
distinct in their DNA methylation landscape, particularly in the
mCHH context. Methylation at CH- and C-DMRs was higher in the
columella than in other cell types, suggesting that CHH hypermethy-
lation in the columella is the primary basis for CH- and C-DMRs
among root meristem cells (Fig. 2g and Supplementary Fig. 5).

As mCHH is deposited by two distinct DNA methyltransferases,
DRM2 and CMT2 (refs 3,4), we sought to determine which methyl-
transferase was responsible for mediating changes in mCHH in each
set of DMRs. We analysed mCHH levels within DMR coordinates in
leaves of wild-type, drm1 drm2 and cmt2 plants to categorize DMRs
as DRM2 or CMT2 targets, using previously published DNA
methylation data20 (Supplementary Fig. 6). For CH-DMRs, both
drm1 drm2 and cmt2 showed decreased mCHH in these regions,
but the effect of cmt2 was much larger, whereas for C-DMRs only
drm1 drm2 caused a decrease in mCHH levels. These results
reveal that mCHH within CH-DMRs and C-DMRs is mainly cata-
lysed by CMT2 and DRM2, respectively. DRM2 is involved in two
types of RdDM: the canonical Pol IV-mediated RdDM guided by
24-nt smRNAs1,2, and RDR6-mediated RdDM guided by 21- and
22-nt smRNAs21. We detected upregulation of 21–24-nt smRNA
abundance within both CH-DMRs and especially C-DMRs in the
columella, but 24-nt smRNAs were predominant (Fig. 2h and
Supplementary Fig. 7), suggesting that the canonical Pol IV-
mediated RdDM pathway plays a major role in establishing these
DMRs. We did not observe higher steady-state transcript abundance
of TEs in the columella (Supplementary Fig. 8).

Gene body methylation in the CG context is correlated with con-
stitutive gene expression22–24. In contrast, DNAmethylation in gene-
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flanking regions is thought to repress gene expression. To address
whether DMRs affect the expression of nearby genes, we correlated
DMR methylation levels and nearby gene expression levels
(Fig. 2i). Most CG-DMRs were located within the gene bodies,
especially near transcriptional termination sites. However, minimal
correlation between methylation levels at CG-DMRs and expression
levels of nearby genes was observed. CH- and C-DMRs are largely
excluded from the gene bodies. The correlation between CH- and
C-DMR methylation and gene expression was also variable, but
methylation at transcription start sites was weakly negatively corre-
lated with the transcript abundance of nearby genes. Similarly,
methylation at C-DMRs within gene bodies showed a negative
correlation with gene expression. These results suggest root cell-
type-specific CH and C-DMRs are only weakly associated with
cell-type-specific gene expression patterns. Additionally, gene
ontology enrichment analysis showed that CH-DMR-associated
genes were enriched for response genes, such as ‘defence response’
and ‘innate immune response’ (Supplementary Fig. 9). This suggests
that CH-DMRs only weakly correlate with nearby gene expression,
and may only have an impact on gene expression under specific
environmental circumstances.

Transposable elements are targets for CHH hypermethylation.
Although only a small percentage of CH-DMRs were found to
intersect with gene bodies (Fig. 2f), these still represented more than
1,000 gene loci because of the abundant nature of CH-DMRs. To
further investigate whether there was a correlation between mCHH
levels within genes and the transcript abundance of those genes, we
placed all TAIR10 genes in order on the basis of the average

transcript abundance among cell populations and further analysed
patterns of DNA methylation (Fig. 3). This revealed that whereas
levels and patterns of mCG and mCHG were similar between cell
types (Fig. 3a) lowly expressed and silent genes were CHH
hypermethylated in the columella. Furthermore, we found that the
number of genes harbouring TEs was also enriched in genes with
lower expression (Fig. 3a), suggesting that increases in mCHH
within lowly expressed genes may be due to the hypermethylation of
TEs contained within these genes. As mCHH serves to
transcriptionally silence TEs in Arabidopsis, and most CH-DMRs
were found within annotated TEs, we compared patterns and levels
of DNA methylation across all TEs in the genome (Fig. 3b–d).
Levels of mCG and mCHG in TEs were only moderately higher in
both of the columella cell populations, consistent with our
observations on a genome-wide scale (Fig. 1c). However, a large
increase in mCHH in in TEs in both of the columella cell
populations was observed compared with the other cell types,
and this was consistent across all known TE superfamilies in
Arabidopsis (Supplementary Fig. 10). This indicates that, although
some CH-DMRs were found to intersect with protein-coding genes,
differences in mCHH between cell types can be attributed almost
entirely to the CHH hypermethylation of TEs in the columella. As
TEs are greatly enriched in the pericentromeric heterochromatin,
this would also explain the enrichment of mCHH and CH-DMRs in
the pericentromeric regions (Figs 1c and 2d).

Enhanced RNA-directed DNA methylation in the columella. As
we observed an increase in mCHH in TEs, as well as an increase
in 24-nt smRNA abundance at CH-DMRs, we next sought to
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determine whether there might be transcriptional upregulation of the
RdDM pathway in the columella. Analysis of the RNA-seq data
revealed an increase in transcripts encoding components of the
RdDM pathway in the columella compared with the other cell
populations (Fig. 4a). In particular, we found an enrichment for
transcripts encoding proteins needed for smRNA biogenesis, such
as the major unique Pol IV component NRPD1a, as well as CLSY1,
RDR2 and DCL3, and those components involved directly in the
deposition of DNA methylation were only mildly upregulated in
the columella25–28. To investigate whether this increased production
of smRNA biogenesis machinery in the columella translated into
an increase in the proportion of 24-nt smRNAs sequenced, we
assessed levels of uniquely mapped 21, 22, 23 and 24-nt smRNAs
genome wide (Fig. 4b and Supplementary Table 5). This revealed a
strong increase in the fraction of 24-nt smRNAs in the columella,
indicating that the hypermethylation of TEs in the columella is
coupled with the transcriptional upregulation of the smRNA
biogenesis machinery and increased production of 24-nt smRNAs
needed for the RdDM pathway.

DDM1 protein is not present in the columella. In the vegetative
cell nucleus of the pollen, a loss of mCG and mCHH throughout
the genome is coupled with increased mCHH at the centromere,

the absence of DDM1 protein, and loss of heterochromatin9,10

(Supplementary Fig. 11). This triggers TE transcriptional activation
and increased production of 21-nt smRNAs from TE transcripts,
which are thought to be transported to the sperm cells to reinforce
TE silencing in the germline9,10. We observed an increase in 24-nt
smRNAs and CHH hypermethylation of TEs in columella cells.
Although no decrease in DDM1 transcript abundance specific to
the columella was detected (Figs 4a and 5a), analysis of a
transgenic line expressing the DDM1–GFP fusion protein revealed
that DDM1–GFP was undetectable in the columella, whereas it was
present in the nuclei of other root cell types (Fig. 5b). This
indicates that DDM1 is transcribed in the columella, but either the
transcripts are not translated or there is rapid degradation of
DDM1 protein. Despite an apparent lack of DDM1 in the
columella, and in contrast to ddm1, normal levels of mCG and
mCHG are maintained at TEs, and there are elevated levels of
mCHH (Figs 3d and 5c).

DDM1-dependent mCHH deposition is catalysed by the DNA
methyltransferase CMT2 (ref. 3), and the RdDM pathway together
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Figure 5 | Loss of DDM1 in the columella. a, DDM1 transcript abundance in
all cell types. b, Absence of DDM1–GFP in the columella. c, mCHH levels
and smRNA accumulation around methylated TEs. Methylated TEs were
classified into four clusters based on TE body methylation levels of wild
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with CMT2 are responsible for almost all mCHH in the genome4.
We classified all methylated TEs into four clusters, based on the
mCHH levels within TE bodies of the wild-type, drm1 drm2,
cmt2 and ddm1 leaf tissue (Fig. 5c, left). mCHH levels in TEs in clus-
ters 1 and 2 were decreased in drm1 drm2, indicating that they were
RdDM-dependent. mCHH levels in TEs in cluster 3 and cluster 4
were decreased in cmt2, indicating that their methylation was
CMT2 dependent. Strikingly, in the columella, TEs in all four clus-
ters were hypermethylated (Fig. 5c). RdDM-dependent TEs were
hypermethylated, accompanied by 24-nt, but not 21-nt, smRNA
accumulation. CMT2-dependent TEs were hypermethylated in the
columella, and those located in chromosome arms were
accompanied by 24-nt smRNA accumulation, consistent with 24-
nt smRNA enrichment in CH-DMRs. The edges of CMT2-depen-
dent TEs are subjected to RdDM, and 24-nt smRNAs are enriched
in these regions3. However, the edges as well as the bodies of CMT2-
dependent TEs accumulated 24-nt smRNAs in the columella
(Fig. 5c,d), suggesting that the bodies of CMT2-dependent TEs
are also subjected to RdDM. This may account for CHH hyper-
methylation of CMT2-dependent TEs, but lower expression of
CMT2 in the columella (Fig. 4a).

DDM1 is normally required for the displacement of histone H1
at heterochromatic regions of the genome, allowing DNA methyl-
transferases MET1, CMT3 and CMT2 to access and methylate the
DNA3. As loss of H1 suppresses the reduction in DNA methylation
in ddm1mutants, we examined transcript levels for the two canoni-
cal histone H1 genes,H1.1 andH1.2, and observed lower abundance
of transcripts for both genes in columella cells than in other cells in
the root meristem (Fig. 4a). Also H2A.W6 and H2AW.7, which are
required for chromatin condensation29, were downregulated in the
columella (Fig. 4a), suggesting that the columella may lose hetero-
chromatin by a reduction of heterochromatin-related components.
Loss of heterochromatin in the columella may play a role in enhan-
cing generation of the 24-nt smRNA transcripts needed for RdDM,
leading to the observed CHH hypermethylation of TEs.

Discussion
Plants are complex multicellular organisms that contain a broad
variety of cell types with specialized functions. Although differences
in patterns of DNA methylation have been observed previously
between different somatic tissues16 and reproductive cell types9–11,30,
this is the first report of differences in DNA methylation between
cell types from the same somatic tissue. The root meristem contains
a diverse variety of cell types. Among these, the columella is a group
of specialized gravity-sensing cells required for proper development
of the root31,32. The most striking and unique feature of these root
cell methylomes is the CHH hypermethylation of TEs in the colu-
mella, which is obscured when methylomes are analysed using
whole roots or dissected root tips. The majority of detected DMRs
are columella hypermethylated CH-DMRs occurring in epigeneti-
cally labile regions. To date, the columella is the most highly methyl-
ated tissue or cell type characterized in Arabidopsis, and such an
extreme level of hypermethylation is not recapitulated by any
known gene-silencing mutant. Columella cells are rapidly replaced
in the root as they grow outward from the columella initials,
located below the quiescent centre, and are ultimately detached
into the soil. Consequently, columella cells are short lived and
undergo rapid differentiation. mCHH primarily serves to silence
TE transcription in Arabidopsis, preventing potentially damaging
genetic mutations caused by transposition. Owing to the terminally
differentiated and short-lived nature of columella cells, it is reason-
able to expect that TE insertions in the columella would have little
impact on root function and fitness, as these mutations would be
quickly lost from the plant. The apparent enhancement of DNA
methylation-mediated TE silencing in the columella is therefore
counterintuitive. One possible explanation for this seeming

contradiction is that the columella acts as a companion to nearby
stem cells, and is similar in function to the reproductive companion
cells found in the developing pollen and seed9–11,30. Excess 24-nt
smRNAs produced by the columella, required for initiation of
RdDM at TEs, may be transported into the neighbouring stem
cell niches such as the quiescent centre, reinforcing transcriptional
silencing of TEs in these stem cells in a manner analogous to the
smRNA transport thought to occur between the vegetative cell
nucleus and sperm cells in the developing pollen, between the
central cell and egg, and possibly between the endosperm and
embryo10,11. As the root stem cells are responsible for the establish-
ment of tissue patterning in the root, and all cells of the root descend
from these stem cells, transpositions in them may have a larger
impact on plant fitness, and therefore have a greater need for effec-
tive TE silencing, similar to generative stem cells in the germline.
Although DDM1 is undetectable in both the columella and the
vegetative cell nucleus of the pollen, the patterns of mCHH at TEs
are distinct between these two cell types, with mCHH levels in the
vegetative cell nucleus being more similar to that found in ddm1.
Heterochromatin has been suggested to inhibit RdDM, whereas
open chromatin increases the accessibility of RdDM components
to the genome leading to hypermethylation33. DDM1, and associ-
ated proteins such as H1, may play an important role in regulating
the exclusion of RdDM-related factors from the heterochromatin,
and it is possible that DDM1 protein accumulation is actively sup-
pressed in the columella to allow RdDM at DDM1-regulated hetero-
chromatic regions. Another possible explanation for the CHH
hypermethylation and upregulation of the RdDM pathway in the
columella may be that special attributes of the columella, such as
the rapid differentiation after one division of the stem cell and poss-
ible increased ploidy level34, are conducive to hypermethylation of
TEs. Future experiments will be needed to further examine
these hypotheses.

Methods
Cell isolation. Seedlings were grown vertically for 6 days after plating on 1×
Murashige and Skoog media supplemented with 1% sucrose and 1% agar. All
seedlings were grown under standard long day conditions (16 h of light, 8 h of
darkness, 22 °C). FACS was performed using cell-specific GFP lines as described
previously35. The columella root cap was marked with the enhancer trap PET111
(ref. 36), the bottom two layers of the columella were marked with ProCYCD5–GFP
(ref. 37), the stele with ProWOL–GFP (ref. 38), the endodermis with ProSCR–GFP
(ref. 39), the cortex with ProCORTEX–GFP (ref. 40), and both the epidermis and
lateral root cap with ProWER–GFP (ref. 41). Sorted cells were collected directly into
specific lysis buffers that were compatible with downstream applications. Cells used for
bisulphite sequencing, mRNA-seq and smRNA-seq were lysed in Buffer AP1
(Qiagen), Buffer RLT (Qiagen), Trizol (Invitrogen). All samples were immediately
stored at −80 °C until genomic DNA and RNA had been extracted using the
DNeasy Plant mini kit (Qiagen) and the RNeasy Plant mini kit (Qiagen) or
Trizol, respectively.

MethylC-seq.MethylC-seq library preparation, read mapping and base calling were
performed as described previously42–44, except that reads were mapped against the
C-to-T converted TAIR10 reference genome, and library amplification was
performed with either the KAPA HiFi U+ (KAPA) or the PfuTurboCx enzyme
(Agilent). The bisulphite non-conversion rate was estimated from the total number
of cytosine base calls divided by the total coverage at cytosine positions in the
naturally unmethylated chloroplast genome.

Identification of differentially methylated regions.DMRs were identified using the
methylpy pipeline45. Briefly, differentially methylated sites (DMSs) were identified
by root mean square tests with a false discovery rate at 0.05 using 1,000
permutations. Cytosine positions at least with four reads were examined for
differential methylation. Then, DMSs within 200 bp were collapsed into DMRs.
DMRs were classified into CG-DMRs (only CG difference), CH-DMRs (only CHG
and/or CHH difference), C-DMRs (CG and CHG and/or CHH difference). In
addition, CG-DMRs, CH-DMRs and C-DMRs with fewer than five, five and ten
DMSs, respectively, were discarded in the following analysis. Differential
methylation tests were performed among samples, not in a pairwise manner,
generating a set of all non-redundant DMRs among the samples. The methylation
levels in each region were calculated as weighted methylation levels46, in which the
methylation level was equal to the frequency of C base calls at C positions within the
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region divided by the frequency of C and T base calls at C positions within
the region.

RNA-seq. RNA-seq library preparation was performed using the Illumina TruSeq
RNA Library Prep kit from polyA+ selected mRNA as per the manufacturer’s
instructions. smRNA sequencing data were obtained from a previous study47.
smRNA data were processed and mapped to the TAIR10 genome as described
previously48. smRNAs levels were normalized to TE size and library size by counting
the reads per kilobase of TE per million reads mapped (RPKM). Only reads that
mapped uniquely to the genome contributed to the average count for each TE.
RNA-seq data were mapped to the TAIR10 reference genome using Tophat2 with
the default parameters49 and quantified using Cuffdiff (ref. 50).

Associating DMRs with proximal genes. DMRs located within 3 kb of gene
upstream regions, gene bodies and 3 kb of gene downstream regions were extracted,
and relative position to genes were assigned by the middle position of DMRs. Some
DMRs were located within multiple genomic features, for example in the 3 kb
upstream regions, gene bodies or 3 kb downstream regions for more than one gene.
We refer to all possible pairwise comparisons between DMRs and nearby genomic
features as ‘combinations’. Pearson correlation coefficients between the methylation
levels of DMRs and the expression levels of proximal genes (FPKM) were computed
and plotted as density.

Clustering TEs. mCHH levels within annotated TE bodies at least 400 bp in length
were computed, and only TEs with a minimum of 10% of mCHH in at least one
sample from Col-0, drm1 drm2, cmt2 and ddm1 were assigned as methylated TEs.
TEs were then clustered into four clusters by using R k-means function, with the
‘centres’ parameter set to 4.

Microscopy analysis. The DDM1–GFP transgenic line has been described
previously9. Seeds were plated on 1/2× Linsmaier and Skoog media. Three days after
germination, seedlings were incubated in propidium iodide for 5 min to stain cell
walls of root tips, and imaged using Zeiss LSM 710 Confocal Microscope.

Accession codes. All sequence data can be downloaded from NCBI GEO under
accession GSE79710, and can also be viewed at http://neomorph.salk.edu/
Arabidopsis_root_methylomes.php.
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